首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35873篇
  免费   3392篇
  国内免费   2320篇
电工技术   3336篇
技术理论   1篇
综合类   3352篇
化学工业   1697篇
金属工艺   3328篇
机械仪表   6630篇
建筑科学   1055篇
矿业工程   1876篇
能源动力   541篇
轻工业   2899篇
水利工程   372篇
石油天然气   533篇
武器工业   283篇
无线电   2428篇
一般工业技术   2326篇
冶金工业   1461篇
原子能技术   81篇
自动化技术   9386篇
  2024年   98篇
  2023年   695篇
  2022年   1185篇
  2021年   1340篇
  2020年   1316篇
  2019年   974篇
  2018年   847篇
  2017年   1061篇
  2016年   1233篇
  2015年   1403篇
  2014年   2330篇
  2013年   1841篇
  2012年   2747篇
  2011年   2824篇
  2010年   2043篇
  2009年   2039篇
  2008年   1887篇
  2007年   2486篇
  2006年   2363篇
  2005年   2012篇
  2004年   1569篇
  2003年   1361篇
  2002年   1142篇
  2001年   998篇
  2000年   798篇
  1999年   617篇
  1998年   457篇
  1997年   377篇
  1996年   295篇
  1995年   280篇
  1994年   228篇
  1993年   163篇
  1992年   111篇
  1991年   86篇
  1990年   79篇
  1989年   82篇
  1988年   66篇
  1987年   23篇
  1986年   26篇
  1985年   12篇
  1984年   7篇
  1983年   15篇
  1982年   12篇
  1981年   6篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1959年   4篇
  1958年   3篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage, quick learning speed, and great generalization performances. The number of hidden neurons in ELM is set to 2000. Ten runs of 10-fold cross-validation are implemented to generate impartial results. (Result) For the 296-image dataset, our SNELM model attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset, the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ± 1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclusion) The proposed SNELM model is successful in diagnosing COVID-19. The performances of our model are higher than seven state-of-the-art COVID-19 recognition models.  相似文献   
992.
Learning Management System (LMS) is an application software that is used in automation, delivery, administration, tracking, and reporting of courses and programs in educational sector. The LMS which exploits machine learning (ML) has the ability of accessing user data and exploit it for improving the learning experience. The recently developed artificial intelligence (AI) and ML models helps to accomplish effective performance monitoring for LMS. Among the different processes involved in ML based LMS, feature selection and classification processes find beneficial. In this motivation, this study introduces Glowworm-based Feature Selection with Machine Learning Enabled Performance Monitoring (GSO-MFWELM) technique for LMS. The key objective of the proposed GSO-MFWELM technique is to effectually monitor the performance in LMS. The proposed GSO-MFWELM technique involves GSO-based feature selection technique to select the optimal features. Besides, Weighted Extreme Learning Machine (WELM) model is applied for classification process whereas the parameters involved in WELM model are optimally fine-tuned with the help of Mayfly Optimization (MFO) algorithm. The design of GSO and MFO techniques result in reduced computation complexity and improved classification performance. The presented GSO-MFWELM technique was validated for its performance against benchmark dataset and the results were inspected under several aspects. The simulation results established the supremacy of GSO-MFWELM technique over recent approaches with the maximum classification accuracy of 0.9589.  相似文献   
993.
Biomedical image processing is widely utilized for disease detection and classification of biomedical images. Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere. For removing the qualitative aspect, tongue images are quantitatively inspected, proposing a novel disease classification model in an automated way is preferable. This article introduces a novel political optimizer with deep learning enabled tongue color image analysis (PODL-TCIA) technique. The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue. To attain this, the PODL-TCIA model initially performs image pre-processing to enhance medical image quality. Followed by, Inception with ResNet-v2 model is employed for feature extraction. Besides, political optimizer (PO) with twin support vector machine (TSVM) model is exploited for image classification process, shows the novelty of the work. The design of PO algorithm assists in the optimal parameter selection of the TSVM model. For ensuring the enhanced outcomes of the PODL-TCIA model, a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.  相似文献   
994.
Twitter is a radiant platform with a quick and effective technique to analyze users’ perceptions of activities on social media. Many researchers and industry experts show their attention to Twitter sentiment analysis to recognize the stakeholder group. The sentiment analysis needs an advanced level of approaches including adoption to encompass data sentiment analysis and various machine learning tools. An assessment of sentiment analysis in multiple fields that affect their elevations among the people in real-time by using Naive Bayes and Support Vector Machine (SVM). This paper focused on analysing the distinguished sentiment techniques in tweets behaviour datasets for various spheres such as healthcare, behaviour estimation, etc. In addition, the results in this work explore and validate the statistical machine learning classifiers that provide the accuracy percentages attained in terms of positive, negative and neutral tweets. In this work, we obligated Twitter Application Programming Interface (API) account and programmed in python for sentiment analysis approach for the computational measure of user’s perceptions that extract a massive number of tweets and provide market value to the Twitter account proprietor. To distinguish the results in terms of the performance evaluation, an error analysis investigates the features of various stakeholders comprising social media analytics researchers, Natural Language Processing (NLP) developers, engineering managers and experts involved to have a decision-making approach.  相似文献   
995.
Edge computing is a cloud computing extension where physical computers are installed closer to the device to minimize latency. The task of edge data centers is to include a growing abundance of applications with a small capability in comparison to conventional data centers. Under this framework, Federated Learning was suggested to offer distributed data training strategies by the coordination of many mobile devices for the training of a popular Artificial Intelligence (AI) model without actually revealing the underlying data, which is significantly enhanced in terms of privacy. Federated learning (FL) is a recently developed decentralized profound learning methodology, where customers train their localized neural network models independently using private data, and then combine a global model on the core server together. The models on the edge server use very little time since the edge server is highly calculated. But the amount of time it takes to download data from smartphone users on the edge server has a significant impact on the time it takes to complete a single cycle of FL operations. A machine learning strategic planning system that uses FL in conjunction to minimise model training time and total time utilisation, while recognising mobile appliance energy restrictions, is the focus of this study. To further speed up integration and reduce the amount of data, it implements an optimization agent for the establishment of optimal aggregation policy and asylum architecture with several employees’ shared learners. The main solutions and lessons learnt along with the prospects are discussed. Experiments show that our method is superior in terms of the effective and elastic use of resources.  相似文献   
996.
Rapid increase in the large quantity of industrial data, Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation, data sensing and collection, real-time data processing, and high request arrival rates. The classical intrusion detection system (IDS) is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity. To resolve these issues, this paper designs a new Chaotic Cuckoo Search Optimization Algorithm (CCSOA) with optimal wavelet kernel extreme learning machine (OWKELM) named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform. The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complexity and maximum detection accuracy. The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique, which incorporates the concepts of chaotic maps with CSOA. Besides, the OWKELM technique is applied for the intrusion detection and classification process. In addition, the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization (SFO) algorithm. The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance. In order to guarantee the supreme performance of the CCSOA-OWKELM technique, a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promising performance of the CCSOA-OWKELM technique over the recent state of art techniques.  相似文献   
997.
Skin lesions have become a critical illness worldwide, and the earlier identification of skin lesions using dermoscopic images can raise the survival rate. Classification of the skin lesion from those dermoscopic images will be a tedious task. The accuracy of the classification of skin lesions is improved by the use of deep learning models. Recently, convolutional neural networks (CNN) have been established in this domain, and their techniques are extremely established for feature extraction, leading to enhanced classification. With this motivation, this study focuses on the design of artificial intelligence (AI) based solutions, particularly deep learning (DL) algorithms, to distinguish malignant skin lesions from benign lesions in dermoscopic images. This study presents an automated skin lesion detection and classification technique utilizing optimized stacked sparse autoencoder (OSSAE) based feature extractor with backpropagation neural network (BPNN), named the OSSAE-BPNN technique. The proposed technique contains a multi-level thresholding based segmentation technique for detecting the affected lesion region. In addition, the OSSAE based feature extractor and BPNN based classifier are employed for skin lesion diagnosis. Moreover, the parameter tuning of the SSAE model is carried out by the use of sea gull optimization (SGO) algorithm. To showcase the enhanced outcomes of the OSSAE-BPNN model, a comprehensive experimental analysis is performed on the benchmark dataset. The experimental findings demonstrated that the OSSAE-BPNN approach outperformed other current strategies in terms of several assessment metrics.  相似文献   
998.
为了解决安全数码卡(SD卡,secure digital card)表面字符人工验证效率差、准确率低的问题,提出了一种基于中心化Jaccard匹配的SD卡光学字符验证方法,能够实现SD卡表面字符的精密检测与自动验证。首先,提出了一种基于HSV三通道直方图分析的快速验证方法,实现特征显著SD卡图像的准确验证;其次,针对SD卡字符验证精度受光照变化和微小旋转影响的问题,提取V通道图像和变化角度特征,提高HOG特征对光照和旋转变化的抵抗能力;最后,针对相似SD卡字符的验证问题,提出了一种中心化广义Jaccard系数,增强了相似度指标的辨别力,实现了特征相似图像的精密检测。以实际场景采集的数据对所提方法进行验证分析,试验结果表明,该算法准确率达到99.15%,具有很好的实用性和鲁棒性。  相似文献   
999.
针对因工业机器人旋转部件故障诊断模型最优参数难以自适应确定导致故障识别率低的问题,提出了一种参数联合优化的VMD-SVM的工业机器人旋转部件故障诊断方法;提出了一种基于遗传变异的改进灰狼算法,该算法采用Logistic混沌映射进行种群初始化,将非线性因子引入位置更新公式,并利用遗传变异策略解决算法陷入局部最优时的停滞现象;基于该算法对VMD和SVM进行参数联合优化;利用参数优化的VMD对故障信号进行分解,对所得的本征模态函数计算改进样本熵以构成特征向量,再输入至参数优化的SVM完成工业机器人旋转部件的故障诊断;仿真和实验结果表明,本文方法能够准确地进行故障诊断,在信号无噪和含噪的条件下准确率最高均达100%,较EMD、LMD、DTCWT、VMD等四种方法具有更优的指标。  相似文献   
1000.
From AlphaGo to ChatGPT, the field of AI has launched a series of remarkable achievements in recent years. Analyzing, comparing, and summarizing these achievements at the paradigm level is important for future AI innovation, but has not received sufficient attention. In this paper, we give an overview and perspective on machine learning paradigms. First, we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective. Accordingly, we give an overview on three basic and twelve extended learning paradigms, such as Ensemble Learning, Transfer Learning, etc., with figures in unified style. We further analyze three advanced paradigms, i.e., AlphaGo, AlphaFold and ChatGPT. Second, to enable more efficient and effective scientific discovery, we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science (DeSci) movement based on decentralized autonomous organization (DAO). To this end, we design the Hanoi framework, which integrates human factors, parallel intelligence based on a combination of artificial systems and the natural world, and the DAO to inspire AI innovations.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号